Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C32⋊C6

Direct product G=N×Q with N=C22 and Q=C2×C32⋊C6
dρLabelID
C23×C32⋊C672C2^3xC3^2:C6432,558

Semidirect products G=N:Q with N=C22 and Q=C2×C32⋊C6
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C32⋊C6) = C2×C62⋊S3φ: C2×C32⋊C6/C3×C6S3 ⊆ Aut C22186+C2^2:(C2xC3^2:C6)432,535
C222(C2×C32⋊C6) = C2×C62⋊C6φ: C2×C32⋊C6/C2×C3⋊S3C3 ⊆ Aut C22186+C2^2:2(C2xC3^2:C6)432,542
C223(C2×C32⋊C6) = D4×C32⋊C6φ: C2×C32⋊C6/C32⋊C6C2 ⊆ Aut C223612+C2^2:3(C2xC3^2:C6)432,360
C224(C2×C32⋊C6) = C2×He36D4φ: C2×C32⋊C6/C2×He3C2 ⊆ Aut C2272C2^2:4(C2xC3^2:C6)432,377

Non-split extensions G=N.Q with N=C22 and Q=C2×C32⋊C6
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C32⋊C6) = C62.13D6φ: C2×C32⋊C6/C32⋊C6C2 ⊆ Aut C227212-C2^2.1(C2xC3^2:C6)432,361
C22.2(C2×C32⋊C6) = C62.36D6φ: C2×C32⋊C6/C2×He3C2 ⊆ Aut C22726C2^2.2(C2xC3^2:C6)432,351
C22.3(C2×C32⋊C6) = C4×C32⋊C12central extension (φ=1)144C2^2.3(C2xC3^2:C6)432,138
C22.4(C2×C32⋊C6) = C62.19D6central extension (φ=1)144C2^2.4(C2xC3^2:C6)432,139
C22.5(C2×C32⋊C6) = C62.20D6central extension (φ=1)144C2^2.5(C2xC3^2:C6)432,140
C22.6(C2×C32⋊C6) = C62.21D6central extension (φ=1)72C2^2.6(C2xC3^2:C6)432,141
C22.7(C2×C32⋊C6) = C623C12central extension (φ=1)72C2^2.7(C2xC3^2:C6)432,166
C22.8(C2×C32⋊C6) = C2×He33Q8central extension (φ=1)144C2^2.8(C2xC3^2:C6)432,348
C22.9(C2×C32⋊C6) = C2×C4×C32⋊C6central extension (φ=1)72C2^2.9(C2xC3^2:C6)432,349
C22.10(C2×C32⋊C6) = C2×He34D4central extension (φ=1)72C2^2.10(C2xC3^2:C6)432,350
C22.11(C2×C32⋊C6) = C22×C32⋊C12central extension (φ=1)144C2^2.11(C2xC3^2:C6)432,376

׿
×
𝔽